论文标题

$ d \ ge 4 $尺寸的中子星的研究

A study of neutron stars in $D \ge 4$ dimensions

论文作者

Bagchi, Manjari

论文摘要

球形对称恒星或Tolman-Oppenheimer-volkoff方程的静水平衡的相对论方程在较高的维度中已知。在本文中,这些方程是用4维时空的参数表示的,并使用标准状态方程式使用标准状态方程式求解了4个维度时段的中子恒星物质的状态方程。已经表明,随着维数的增加,中子恒星质量的最大值减少,而恒星变得不那么紧凑。因此,尽管紧凑型极限随维度的增加而降低,但中子恒星永远不会违反该极限。中子恒星的质量,半径和重力红移的同时测量可能使我们能够得出结论的结论,状态方程以及恒星内和周围的时空的维度。

The relativistic equations of hydrostatic equilibrium for a spherically symmetric star, or the Tolman-Oppenheimer-Volkoff equations are known in higher dimensions. In this paper, these equations have been expressed in terms of parameters of 4 dimensional spacetime and solved numerically for 4, 5, 6, and 7 dimensions using a standard equation of state for the neutron star matter derived for the 4 dimensional spacetime. It has been shown that with the increase of the dimensionality, the maximum value of the mass of the neutron star decreases and the stars become less compact. Thus, although the compactness limit decreases with increased dimensionality, neutron stars never violate this limit. Simultaneous measurements of the mass, radius, and gravitational redshift for a neutron star might enable us to conclude about the central density, equation of state and the dimensionality of the spacetime in and around the star.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源