论文标题

同源镜像对称性的功能性的方面

Aspects of functoriality in homological mirror symmetry for toric varieties

论文作者

Hanlon, Andrew, Hicks, Jeff

论文摘要

我们研究了用于感谢您的品种的同源镜子对称性,探索了已用于将镜子构造成圆磨品种的各种福卡亚 - 塞德尔类别之间的关系。特别是,我们将热带拉格朗日部分视为部分包裹类别的对象,并构建了拉格朗日对应镜像,以包含福利分隔线。作为推论,我们证明,热带部分生成了福卡亚 - 西德尔类别,从而完成了用于投影型摩腹品种的同源镜子对称性的浮动理论证明。在证据的过程中,我们开发了在liouville域中构建拉格朗日式和拉格朗日信件的技术,这可能具有独立的兴趣。

We study homological mirror symmetry for toric varieties, exploring the relationship between various Fukaya-Seidel categories which have been employed for constructing the mirror to a toric variety. In particular, we realize tropical Lagrangian sections as objects of a partially wrapped category and construct a Lagrangian correspondence mirror to the inclusion of a toric divisor. As a corollary, we prove that tropical sections generate the Fukaya-Seidel category, completing a Floer-theoretic proof of homological mirror symmetry for projective toric varieties. In the course of the proof, we develop techniques for constructing Lagrangian cobordisms and Lagrangian correspondences in Liouville domains, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源