论文标题
用弱强加的Dirichlet边界对电化学系统进行建模
Modeling electrochemical systems with weakly imposed Dirichlet boundary conditions
论文作者
论文摘要
带电物种运输的有限元建模可以使各种电化学和电动器设备的分析,设计和优化。这些系统由Poisson-Nernst-planck方程以及Navier-Stokes方程式,关键的兴趣数量是系统边界处的电流。由于需要在边界处进行精细的网格分辨率的边界层(小debye层)的较小的临界维度,因此准确地计算当前通量是具有挑战性的。我们通过使用Dirichlet到NeumannTransformation来解决这一挑战,以弱地施加了Poisson-Nernst-Planck方程的差异条件。用弱施加的迪里奇(Dirichlet)边界条件获得的结果表明,当我们重新雇用具有高度分辨的网格的常规边界条件时,获得的结果与之相同。此外,与常规施加的迪里奇(Dirichlet)边界条件相比,计算出的电流通量使用弱施加的条件显示出更快的网格收敛性。我们说明了针对规范3D问题的方法,否则这些问题本来会在计算上棘手以准确解决。这种方法大大降低了模型电化学系统的计算成本。
Finite element modeling of charged species transport has enabled analysis, design, and optimization of a diverse array of electrochemical and electrokinetic devices. These systems are represented by the Poisson-Nernst-Planck equations coupled with the Navier-Stokes equation, with a key quantity of interest being the current at the system boundaries. Accurately computing the current flux is challenging due to the small critical dimension of the boundary layers (small Debye layer) that require fine mesh resolution at the boundaries. We resolve this challenge by using the Dirichlet-to-Neumanntransformation to weakly impose the Dirichlet conditions for the Poisson-Nernst-Planck equations. The results obtained with weakly imposed Dirichlet boundary conditions showed excellent agreement with those obtained when conventional boundary conditions with highly resolved mesh we reemployed. Furthermore, the calculated current flux showed faster mesh convergence using weakly imposed conditions compared to the conventionally imposed Dirichlet boundary conditions. We illustrate the approach on canonical 3D problems that otherwise would have been computationally intractable to solve accurately. This approach substantially reduces the computational cost of model-ing electrochemical systems.