论文标题

CQ-VAE:协调VAE,用于不确定性估计,并应用于腰椎脊柱MRI图像的磁盘形状分析

CQ-VAE: Coordinate Quantized VAE for Uncertainty Estimation with Application to Disk Shape Analysis from Lumbar Spine MRI Images

论文作者

Qian, Linchen, Chen, Jiasong, Urakov, Timur, Gu, Weiyong, Liang, Liang

论文摘要

在医学图像中,歧义是不可避免的,这通常会导致不同人类专家的不同图像解释(例如对象边界或分割图)。因此,了解歧义并输出目标概率分布的模型对于评估诊断不确定性的医疗应用是有价值的。在本文中,我们提出了一个强大的生成模型,以学习歧义的表示并产生概率输出。我们的模型命名为坐标量化变量自动编码器(CQ-VAE)通过量化连续的潜在空间的坐标,采用具有内部离散概率分布的离散潜在空间。结果,来自CQ-VAE的输出分布是离散的。在训练过程中,使用离散的潜在空间来启用反向传播。匹配算法用于建立模型生成的样品和“地面真相”样品之间的对应关系,这在生成新样本的能力与表示训练样本的能力之间进行了权衡。除了这些概率组件以生成可能的输出外,我们的模型还具有确定性的途径,可以输出最佳估计。我们在腰椎磁盘图像数据集上演示了我们的方法,结果表明我们的CQ-VAE可以学习腰椎形状变化和不确定性。

Ambiguity is inevitable in medical images, which often results in different image interpretations (e.g. object boundaries or segmentation maps) from different human experts. Thus, a model that learns the ambiguity and outputs a probability distribution of the target, would be valuable for medical applications to assess the uncertainty of diagnosis. In this paper, we propose a powerful generative model to learn a representation of ambiguity and to generate probabilistic outputs. Our model, named Coordinate Quantization Variational Autoencoder (CQ-VAE) employs a discrete latent space with an internal discrete probability distribution by quantizing the coordinates of a continuous latent space. As a result, the output distribution from CQ-VAE is discrete. During training, Gumbel-Softmax sampling is used to enable backpropagation through the discrete latent space. A matching algorithm is used to establish the correspondence between model-generated samples and "ground-truth" samples, which makes a trade-off between the ability to generate new samples and the ability to represent training samples. Besides these probabilistic components to generate possible outputs, our model has a deterministic path to output the best estimation. We demonstrated our method on a lumbar disk image dataset, and the results show that our CQ-VAE can learn lumbar disk shape variation and uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源