论文标题

量子计量学的自适应电路学习

Adaptive Circuit Learning for Quantum Metrology

论文作者

Ma, Ziqi, Gokhale, Pranav, Zheng, Tian-Xing, Zhou, Sisi, Yu, Xiaofei, Jiang, Liang, Maurer, Peter, Chong, Frederic T.

论文摘要

量子传感是新兴量子技术的重要应用。我们探索量子传感器和量子电路的混合系统是否可以超过传感的经典极限。特别是,我们使用优化技术来搜索编码器和解码器电路,这些电路在给定的应用和噪声特征下可依赖于敏感性。我们的方法使用一种变异算法,该算法可以基于平台特定的控制能力,噪声和信号分布来学习量子传感电路。量子电路由编码器组成,该编码器准备最佳传感状态和一个解码器,该解码器提供包含信号信息的输出分布。我们优化了全电路,以最大化信噪比(SNR)。此外,该学习算法可以通过使用“参数转移”规则在真实硬件上运行,该规则可以对嘈杂的量子电路进行渐变评估,从而避免量子系统模拟的指数成本。我们证明,使用IBM Quantum Computer对现有固定协议(GHz)(GHz)(GHz)(GHz)(GHz)(GHz)和3.19x经典Fisher Information(CFI)的改进最多可提高13.12x SNR的改进。更值得注意的是,我们的算法克服了随着系统尺寸增加的现有基于纠缠的协议的降低性能。

Quantum sensing is an important application of emerging quantum technologies. We explore whether a hybrid system of quantum sensors and quantum circuits can surpass the classical limit of sensing. In particular, we use optimization techniques to search for encoder and decoder circuits that scalably improve sensitivity under given application and noise characteristics. Our approach uses a variational algorithm that can learn a quantum sensing circuit based on platform-specific control capacity, noise, and signal distribution. The quantum circuit is composed of an encoder which prepares the optimal sensing state and a decoder which gives an output distribution containing information of the signal. We optimize the full circuit to maximize the Signal-to-Noise Ratio (SNR). Furthermore, this learning algorithm can be run on real hardware scalably by using the "parameter-shift" rule which enables gradient evaluation on noisy quantum circuits, avoiding the exponential cost of quantum system simulation. We demonstrate up to 13.12x SNR improvement over existing fixed protocol (GHZ), and 3.19x Classical Fisher Information (CFI) improvement over the classical limit on 15 qubits using IBM quantum computer. More notably, our algorithm overcomes the decreasing performance of existing entanglement-based protocols with increased system sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源