论文标题

与观察者的示例驱动意图预测

Example-Driven Intent Prediction with Observers

论文作者

Mehri, Shikib, Eric, Mihail

论文摘要

对话系统研究的主要挑战是有效,有效地适应新领域。适应性的可扩展范式需要开发在几个弹药设置中表现良好的可推广模型。在本文中,我们重点介绍了意图分类问题,该问题旨在确定给出的对话框系统的用户意图。我们提出了两种改善话语分类模型的普遍性的方法:(1)观察者和(2)示例驱动的训练。先前的工作表明,类似BERT的模型倾向于将大量关注归因于[Cls]令牌,我们假设这会导致稀释表示。观察者是不在意的代币,并且是[CLS]代币作为语音的语义表示的替代品。示例驱动的培训学会通过比较示例来分类话语,从而将基础编码器作为句子相似性模型。这些方法是互补的。通过观察者改善表示形式可以使示例驱动的模型更好地测量句子相似性。合并后,提出的方法在三个意图预测数据集(\ textsc {banking77},\ textsc {clinc150},\ textsc {hwu64})上获得了最新的结果。此外,我们证明所提出的方法可以转移到新的意图和跨数据集中,而无需任何其他培训。

A key challenge of dialog systems research is to effectively and efficiently adapt to new domains. A scalable paradigm for adaptation necessitates the development of generalizable models that perform well in few-shot settings. In this paper, we focus on the intent classification problem which aims to identify user intents given utterances addressed to the dialog system. We propose two approaches for improving the generalizability of utterance classification models: (1) observers and (2) example-driven training. Prior work has shown that BERT-like models tend to attribute a significant amount of attention to the [CLS] token, which we hypothesize results in diluted representations. Observers are tokens that are not attended to, and are an alternative to the [CLS] token as a semantic representation of utterances. Example-driven training learns to classify utterances by comparing to examples, thereby using the underlying encoder as a sentence similarity model. These methods are complementary; improving the representation through observers allows the example-driven model to better measure sentence similarities. When combined, the proposed methods attain state-of-the-art results on three intent prediction datasets (\textsc{banking77}, \textsc{clinc150}, \textsc{hwu64}) in both the full data and few-shot (10 examples per intent) settings. Furthermore, we demonstrate that the proposed approach can transfer to new intents and across datasets without any additional training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源