论文标题

具有固定点的广义交叉算法用于图像分解学习

Generalized Intersection Algorithms with Fixpoints for Image Decomposition Learning

论文作者

Richter, Robin, Thai, Duy H., Huckemann, Stephan F.

论文摘要

在图像处理中,经典方法最大程度地减少了一个合适的功能,即在计算可行性(功能的凸度是理想的)和反映所需图像分解的合适惩罚之间平衡的功能。从这种最小化问题中得出的算法可以用来构建(深)学习体系结构的事实刺激了算法的开发,这些算法可以接受特定所需的图像分解,例如变成卡通和质地。尽管许多这样的方法非常成功,但理论保证仅几乎无法使用。为此,在这一贡献中,我们正式化了一系列相交点问题,其中包括广泛的(学习的)图像分解模型,并且我们为大量此类问题的子类提供了结果,即给出了相应算法的固定点。该类概述了基于经典模型的变分问题,例如TV-L2模型或更通用的TV-Hilbert模型。为了说明学习算法的潜力,我们班级中的新颖(非学习)选择显示出可比较的降级和纹理去除结果。

In image processing, classical methods minimize a suitable functional that balances between computational feasibility (convexity of the functional is ideal) and suitable penalties reflecting the desired image decomposition. The fact that algorithms derived from such minimization problems can be used to construct (deep) learning architectures has spurred the development of algorithms that can be trained for a specifically desired image decomposition, e.g. into cartoon and texture. While many such methods are very successful, theoretical guarantees are only scarcely available. To this end, in this contribution, we formalize a general class of intersection point problems encompassing a wide range of (learned) image decomposition models, and we give an existence result for a large subclass of such problems, i.e. giving the existence of a fixpoint of the corresponding algorithm. This class generalizes classical model-based variational problems, such as the TV-l2 -model or the more general TV-Hilbert model. To illustrate the potential for learned algorithms, novel (non learned) choices within our class show comparable results in denoising and texture removal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源