论文标题
用于交替虚拟链接的体积定理
A volumish theorem for alternating virtual links
论文作者
论文摘要
达斯巴赫(Dasbach)和林(Lin)证明了用于交替链接的“体积定理”。我们证明了表面上交替的链路图的类似物,该链路图在链接中的链路的双曲线体积减少了琼斯 - 克鲁什卡尔多项式方面的界限。在此过程中,我们表明4-可变Krushkal多项式的某些系数表示表面上还原的Tait图的循环等级。
Dasbach and Lin proved a "volumish theorem" for alternating links. We prove the analogue for alternating link diagrams on surfaces, which provides bounds on the hyperbolic volume of a link in a thickened surface in terms of coefficients of its reduced Jones-Krushkal polynomial. Along the way, we show that certain coefficients of the 4-variable Krushkal polynomial express the cycle rank of the reduced Tait graph on the surface.