论文标题
$ su(2)$ $ {\ cal n} = 2 $ sym in ns限制$ω$背景的递归关系
Recursion relation for instanton counting for $SU(2)$ ${\cal N}=2$ SYM in NS limit of $Ω$ background
论文作者
论文摘要
在本文中,我们调查了instanton comment $ q $ $ {\ cal n} = 2 $ sym in Instanton计数参数$ q $的不同方式,最多可在NS限制为$ω$的情况下进行四个反量无抗超数的hypermultiplets。我们提出了一种计算该周期并通过显式计算来证明其效率的新方法。与已知的标准技术相比,插入式计数的新方法更有利,并且允许以更少的精力达到更高阶段的术语。这种方法适用于纯粹的情况以及具有多个超人的情况。 我们还研究了一种数值方法,该方法用于推导$ a $ cycle时期,对$ q $的任意值有效。分析大型$ Q $渐近线,我们获得了令人信服的协议,并在Alexei Zamolodchikov在不同的情况下从猜想中推论出的分析表达。
In this paper we investigate different ways of deriving the A-cycle period as a series in instanton counting parameter $q$ for ${\cal N}=2$ SYM with up to four antifundamental hypermultiplets in NS limit of $Ω$ background. We propose a new method for calculating the period and demonstrate its efficiency by explicit calculations. The new way of doing instanton counting is more advantageous compared to known standard techniques and allows to reach substantially higher order terms with less effort. This approach is applied for the pure case as well as for the case with several hypermultiplets. We also investigate a numerical method for deriving the $A$-cycle period valid for arbitrary values of $q$. Analyzing large $q$ asymptotic we get convincing agreement with an analytic expression deduced from a conjecture by Alexei Zamolodchikov in a different context.