论文标题
奇数磁多极系统中的非线性电动传输:应用于MN的化合物
Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds
论文作者
论文摘要
违反平等对称性会引起各种物理现象,例如非线性运输和交叉相关反应。特别是,非线性电导率一直吸引着旋转轨道耦合的半导体,超导体,拓扑材料等的关注。在本文中,我们介绍了奇数磁多极有序系统中非线性电导率的理论研究,其$ \ MATHCAL {PT} $ - 对称性与先前研究的各种细胞系统基本不同。结合了微观公式和对称分析,我们将$ \ Mathcal {pt} $ - 对称系统以及$ \ Mathcal {t} $ - 对称(非磁性)系统中的非线性响应分类,并揭示与奇数磁性磁性多极系统独特的非线性电导率。在基于MN的磁体的模型中提出并证明了巨大的非线性霍尔效应,nematicity辅助二色性和磁诱导的浆果曲率偶极效应。
Violation of parity symmetry gives rise to various physical phenomena such as nonlinear transport and cross-correlated responses. In particular, the nonlinear conductivity has been attracting a lot of attentions in spin-orbit coupled semiconductors, superconductors, topological materials, and so on. In this paper we present theoretical study of the nonlinear conductivity in odd-parity magnetic multipole ordered systems whose $\mathcal{PT}$-symmetry is essentially distinct from the previously studied acentric systems. Combining microscopic formulation and symmetry analysis, we classify the nonlinear responses in the $\mathcal{PT}$-symmetric systems as well as $\mathcal{T}$-symmetric (non-magnetic) systems, and uncover nonlinear conductivity unique to the odd-parity magnetic multipole systems. A giant nonlinear Hall effect, nematicity-assisted dichroism and magnetically-induced Berry curvature dipole effect are proposed and demonstrated in a model for Mn-based magnets.