论文标题
一维颗粒系统中没有Efimov效应
The absence of the Efimov effect in systems of one- and two-dimensional particles
论文作者
论文摘要
我们研究$ n $ - 粒子schrödinger运算符的虚拟水平,并证明粒子是一维和$ n \ ge 3 $的,则基本光谱底部的虚拟水平对应于特征值。如果$ n \ ge 4 $,二维粒子也是如此。这些结果用于证明$ N \ ge 4 $一维或$ n \ ge 5 $二维粒子的系统中Efimov效应的不存在。
We study virtual levels of $N$-particle Schrödinger operators and prove that if the particles are one-dimensional and $N\ge 3$, then virtual levels at the bottom of the essential spectrum correspond to eigenvalues. The same is true for two-dimensional particles if $N\ge 4$. These results are applied to prove the non-existence of the Efimov effect in systems of $N\ge 4$ one-dimensional or $N\ge 5$ two-dimensional particles.