论文标题

时间图中不安的可及性问题

Restless reachability problems in temporal graphs

论文作者

Thejaswi, Suhas, Lauri, Juho, Gionis, Aristides

论文摘要

我们研究了在时间和顶点色的时间图中等待时间限制下的一系列可及性问题。给定时间图和一组源顶点,我们找到了可通过时间介绍的路径从源到达的一组顶点,其中连续边缘之间时间戳的差异最多是休息时间。给定顶点颜色的时间图和多颜色的颜色查询,我们发现可以通过次要路径从源到达的顶点,以使该路径的顶点颜色与多空查询的顶点颜色与多层查询一致,并且连续边缘之间的时间戳差异最多是静止的时间。这类问题在理解疾病在网络中的传播,追踪流行病暴发,在大脑网络中找到信号通路,并推荐游客的旅行等方面有应用。 我们提出了一个基于受约束的多\ - 线性筛分的代数算法框架,以解决我们提出的不安的可及性问题。特别是,通过所需路径的长度$ k $参数化,我们表明可以用$ o(2^k kmδ)$ time和$ o(nδ)$ space解决提出的问题,其中$ n $是顶点的数量,$ m $ edges的数量,$δ$最大的放休息时间是输入时间图的最大休息时间。此外,我们证明,在合理的复杂性理论假设下,在顶点的时间图中,我们对不安的可及性问题的算法是最佳的。最后,通过开源实现,我们证明了我们的算法尺度到大图,尽管存在NP危险,但最多可达10亿个时间边缘。具体而言,我们提出了广泛的实验,以评估合成图和现实图表上的可伸缩性主张。我们的实施经过有效设计和高度优化。

We study a family of reachability problems under waiting-time restrictions in temporal and vertex-colored temporal graphs. Given a temporal graph and a set of source vertices, we find the set of vertices that are reachable from a source via a time-respecting path, where the difference in timestamps between consecutive edges is at most a resting time. Given a vertex-colored temporal graph and a multiset query of colors, we find the set of vertices reachable from a source via a time-respecting path such that the vertex colors of the path agree with the multiset query and the difference in timestamps between consecutive edges is at most a resting time. These kind of problems have applications in understanding the spread of a disease in a network, tracing contacts in epidemic outbreaks, finding signaling pathways in the brain network, and recommending tours for tourists, among other. We present an algebraic algorithmic framework based on constrained multi\-linear sieving for solving the restless reachability problems we propose. In particular, parameterized by the length $k$ of a path sought, we show that the proposed problems can be solved in $O(2^k k m Δ)$ time and $O(n Δ)$ space, where $n$ is the number of vertices, $m$ the number of edges, and $Δ$ the maximum resting time of an input temporal graph. In addition, we prove that our algorithms for the restless reachability problems in vertex-colored temporal graphs are optimal under plausible complexity-theoretic assumptions. Finally, with an open-source implementation, we demonstrate that our algorithm scales to large graphs with up to one billion temporal edges, despite the problems being NP-hard. Specifically, we present extensive experiments to evaluate our scalability claims both on synthetic and real-world graphs. Our implementation is efficiently engineered and highly optimized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源