论文标题

两阶段量子步行的特征值,一个缺陷在一个维度上

Eigenvalues of two-phase quantum walks with one defect in one dimension

论文作者

Kiumi, Chusei, Saito, Kei

论文摘要

我们在整数晶格上研究了空间量子量子步行(QW),我们分别为正部分,负部分和来源分别分配了三个不同的硬币矩阵。我们称它们为有一个缺陷的两阶段QW。它们涵盖了一台缺陷和两相QW,这些QW经过深入研究。本地化是QW的最有特征性的特性之一,并且具有一个缺陷的各种类型的两相QW。此外,特征值的存在与本地化密切相关。在本文中,我们获得了特征值的必要条件。我们的分析方法主要基于转移矩阵,这是一种有用的工具,用于生成广义特征功能。此外,我们明确地为具有一个缺陷的某些两相QW的类别得出了特征值,并说明了带有数字的单位圆圈上特征值的范围。我们的结果包括先前研究的一些结果,例如Endo等。 (2020)。

We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-defect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源