论文标题
学习准确的熵模型,具有全局参考以进行图像压缩
Learning Accurate Entropy Model with Global Reference for Image Compression
论文作者
论文摘要
在最近的深层图像压缩神经网络中,熵模型在估计深图像编码的先前分布中起着至关重要的作用。现有方法将高位与熵估计功能中的局部环境结合在一起。由于没有全球愿景,这极大地限制了他们的表现。在这项工作中,我们提出了一个新型的图像压缩全球参考模型,以有效利用本地和全球上下文信息,从而提高压缩率。所提出的方法扫描解码潜在,然后找到最相关的潜在,以帮助当前潜伏的分布估计。这项工作的副产品是平均转移GDN模块的创新,该模块进一步改善了性能。实验结果表明,所提出的模型的表现优于行业中大多数最先进方法的利率延伸性能。
In recent deep image compression neural networks, the entropy model plays a critical role in estimating the prior distribution of deep image encodings. Existing methods combine hyperprior with local context in the entropy estimation function. This greatly limits their performance due to the absence of a global vision. In this work, we propose a novel Global Reference Model for image compression to effectively leverage both the local and the global context information, leading to an enhanced compression rate. The proposed method scans decoded latents and then finds the most relevant latent to assist the distribution estimating of the current latent. A by-product of this work is the innovation of a mean-shifting GDN module that further improves the performance. Experimental results demonstrate that the proposed model outperforms the rate-distortion performance of most of the state-of-the-art methods in the industry.