论文标题

关于在多元时间序列中用于网络异常检测的生成模型的使用

On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series

论文作者

González, Gastón García, Casas, Pedro, Fernández, Alicia, Gómez, Gabriel

论文摘要

尽管多年来探讨了许多尝试和方法的尝试和方法,但数据通信网络中罕见事件的自动检测仍然是一个复杂的问题。在本文中,我们介绍了Net-Gan,这是一种使用经常性神经网络(RNN)和生成对抗网络(GAN)(GAN)进行时间序列中网络异常检测的新型方法。 Net-Gan与传统上关注单变量测量的艺术状态不同,Net-Gan检测到多元时间表的异常,从而通过RNN利用时间依赖性。 Net-Gan发现了基线,多元数据的基本分布,而没有对其性质做出任何假设,提供了一种强大的方法来检测复杂的异常,难以模拟网络监视数据。我们进一步利用生成模型背后的概念来构想Net-Vae,这是基于变化自动编码器(VAE)的网络异常检测的互补方法。我们在不同的监测方案中评估了Net-GAN和Net-VAE,包括IoT传感器数据中的异常检测以及网络测量中的入侵检测。生成模型代表了网络异常检测的一种有前途的方法,尤其是在考虑在操作网络中监视的复杂性和不断增长的时间序列时。

Despite the many attempts and approaches for anomaly detection explored over the years, the automatic detection of rare events in data communication networks remains a complex problem. In this paper we introduce Net-GAN, a novel approach to network anomaly detection in time-series, using recurrent neural networks (RNNs) and generative adversarial networks (GAN). Different from the state of the art, which traditionally focuses on univariate measurements, Net-GAN detects anomalies in multivariate time-series, exploiting temporal dependencies through RNNs. Net-GAN discovers the underlying distribution of the baseline, multivariate data, without making any assumptions on its nature, offering a powerful approach to detect anomalies in complex, difficult to model network monitoring data. We further exploit the concepts behind generative models to conceive Net-VAE, a complementary approach to Net-GAN for network anomaly detection, based on variational auto-encoders (VAE). We evaluate Net-GAN and Net-VAE in different monitoring scenarios, including anomaly detection in IoT sensor data, and intrusion detection in network measurements. Generative models represent a promising approach for network anomaly detection, especially when considering the complexity and ever-growing number of time-series to monitor in operational networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源