论文标题

深度学习的定量数字显微镜

Quantitative Digital Microscopy with Deep Learning

论文作者

Midtvedt, Benjamin, Helgadottir, Saga, Argun, Aykut, Pineda, Jesús, Midtvedt, Daniel, Volpe, Giovanni

论文摘要

视频显微镜在为从物理学到生物学的广泛学科提供洞察力和突破有悠久的历史。从视频显微镜数据中提取定量信息的图像分析传统上依赖于算法方法,这些方法通常很难实施,耗时和计算昂贵。最近,使用深度学习的替代数据驱动方法极大地改善了定量数字显微镜,可能会提供自动化,准确和快速的图像分析。但是,深度学习和视频显微镜的组合主要是由于开发自定义深度学习解决方案所涉及的陡峭学习曲线,主要是由于未充分利用的。为了克服此问题,我们介绍了一个软件DeepTrack 2.0,以设计,训练和验证用于数字显微镜的深度学习解决方案。我们用它来说明如何将深度学习用于广泛的应用,从粒子定位,跟踪和表征到细胞计数和分类。由于其用户友好的图形界面,DeepTrack 2.0可以轻松地针对用户特定的应用程序进行定制,并且由于其开源的面向对象的编程,它可以轻松扩展以添加功能和功能,从而可能引入深层学习的视频显微镜,从而向遥远的受众群体引入。

Video microscopy has a long history of providing insights and breakthroughs for a broad range of disciplines, from physics to biology. Image analysis to extract quantitative information from video microscopy data has traditionally relied on algorithmic approaches, which are often difficult to implement, time consuming, and computationally expensive. Recently, alternative data-driven approaches using deep learning have greatly improved quantitative digital microscopy, potentially offering automatized, accurate, and fast image analysis. However, the combination of deep learning and video microscopy remains underutilized primarily due to the steep learning curve involved in developing custom deep-learning solutions. To overcome this issue, we introduce a software, DeepTrack 2.0, to design, train and validate deep-learning solutions for digital microscopy. We use it to exemplify how deep learning can be employed for a broad range of applications, from particle localization, tracking and characterization to cell counting and classification. Thanks to its user-friendly graphical interface, DeepTrack 2.0 can be easily customized for user-specific applications, and, thanks to its open-source object-oriented programming, it can be easily expanded to add features and functionalities, potentially introducing deep-learning-enhanced video microscopy to a far wider audience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源