论文标题
简化(2,0)的垂直3个manifolds 4个manifolds的转移
Vertical 3-manifolds in simplified (2, 0)-trisections of 4-manifolds
论文作者
论文摘要
我们将获得的$ 3 $ manifolds分类为平面在平面上的弧形映射,以简化$(2,0)$ - Trisection Maps,我们称之为垂直$ 3 $ -Manifolds。这样的$ 3 $ - manifold是垂直$ 3 $ the的连接总和,比特定的$ 6 $ arcs。因此,我们表明$ 6 $ TUPLASS中的每一个都决定了$ 4 $ -Manifold独特地逆转差异性的定向。我们还表明,与以下事实相反:垂直$ 3 $的简化$(2,0)$ - 三角图是镜头空间的总和,存在无限的许多简化$(2,0)$ - $ 4 $ - $ 4 $ -Section Maps,这些映射允许多键垂直$ 3 $ -Manifolds。
We classify the $3$-manifolds obtained as the preimages of arcs on the plane for simplified $(2, 0)$-trisection maps, which we call vertical $3$-manifolds. Such a $3$-manifold is a connected sum of a $6$-tuple of vertical $3$-manifolds over specific $6$ arcs. Consequently, we show that each of the $6$-tuples determines the source $4$-manifold uniquely up to orientation reversing diffeomorphisms. We also show that, in contrast to the fact that summands of vertical $3$-manifolds of simplified $(2, 0)$-trisection maps are lens spaces, there exist infinitely many simplified $(2, 0)$-$4$-section maps that admit hyperbolic vertical $3$-manifolds.