论文标题
对Semistandard天际线填充物的涉嫌
An Involution on Semistandard Skyline Fillings
论文作者
论文摘要
Haglund,Haiman和Loehr使用了非攻击的天际线填充物来建立非对称麦克唐纳多项式的组合公式。 SemistArdard Skyline填充物是非攻击的天际线填充物,其主要索引和共插入数量等于零,它们是关键多项式的组合模型。在本文中,我们在Semistandard Skyline填充物上构建了一个互动。这种情况可以看作是对经典弯曲者的广泛概括 - 知识分子。作为一个应用程序,我们获得了SemistArdard Skyline填充物与纽唑操作员兼容,提供了一种新的组合证明,即非对称MacDonald多项式专门用于关键多项式。
Non-attacking skyline fillings were used by Haglund, Haiman and Loehr to establish a combinatorial formula for nonsymmetric Macdonald polynomials. Semistandard skyline fillings are non-attacking skyline fillings with both major index and coinversion number equal to zero, which serve as a combinatorial model for key polynomials. In this paper, we construct an involution on semistandard skyline fillings. This involution can be viewed as a vast generalization of the classical Bender--Knuth involution. As an application, we obtain that semistandard skyline fillings are compatible with the Demazure operators, offering a new combinatorial proof that nonsymmetric Macdonald polynomials specialize to key polynomials.