论文标题

使用深钢筋学习对粒子加速器的自主控制

Autonomous Control of a Particle Accelerator using Deep Reinforcement Learning

论文作者

Pang, Xiaoying, Thulasidasan, Sunil, Rybarcyk, Larry

论文摘要

我们描述了一种学习最佳的线性粒子加速器的最佳控制策略的方法,并使用深钢筋学习以及高保真物理引擎。该框架由一个AI控制器组成,该控制器使用深层神经网进行状态和动作空间表示,并使用物理模拟器提供的奖励信号来学习最佳策略。对于这项工作,我们只专注于控制整个加速器的一小部分。然而,初始结果表明,就粒子光束电流和分布而言,我们可以实现比人类水平更好的表现。这项工作的最终目标是通过数量级大大减少此类设施的调整时间,并实现近乎自主的控制。

We describe an approach to learning optimal control policies for a large, linear particle accelerator using deep reinforcement learning coupled with a high-fidelity physics engine. The framework consists of an AI controller that uses deep neural nets for state and action-space representation and learns optimal policies using reward signals that are provided by the physics simulator. For this work, we only focus on controlling a small section of the entire accelerator. Nevertheless, initial results indicate that we can achieve better-than-human level performance in terms of particle beam current and distribution. The ultimate goal of this line of work is to substantially reduce the tuning time for such facilities by orders of magnitude, and achieve near-autonomous control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源