论文标题

使用时间卷积网络和优化提供个性化

Offer Personalization using Temporal Convolution Network and Optimization

论文作者

Verma, Ankur

论文摘要

最近,由于在线购物和市场竞争的大幅度上升,个性化营销对于零售/电子零售公司变得很重要。在线购物和高市场竞争的增加导致在线零售商的促销支出增加,因此,推出最佳报价已成为维持交易数量和利润之间的平衡变得至关重要的。在本文中,我们建议在消费者,物品和时间在零售环境中解决要约优化问题的方法。为了优化报价,我们首先使用时间卷积网络构建广义的非线性模型,以预测给定时间段的消费者级别的项目购买概率。其次,我们建立了从模型获得的历史报价价值与购买概率之间的功能关系,然后将其用于估计消费项目粒度购买概率的要约弹性。最后,使用估计的弹性,我们使用基于约束的优化技术优化了要约值。本文介绍了我们的详细方法,并介绍了跨类别的建模和优化结果。

Lately, personalized marketing has become important for retail/e-retail firms due to significant rise in online shopping and market competition. Increase in online shopping and high market competition has led to an increase in promotional expenditure for online retailers, and hence, rolling out optimal offers has become imperative to maintain balance between number of transactions and profit. In this paper, we propose our approach to solve the offer optimization problem at the intersection of consumer, item and time in retail setting. To optimize offer, we first build a generalized non-linear model using Temporal Convolutional Network to predict the item purchase probability at consumer level for the given time period. Secondly, we establish the functional relationship between historical offer values and purchase probabilities obtained from the model, which is then used to estimate offer-elasticity of purchase probability at consumer item granularity. Finally, using estimated elasticities, we optimize offer values using constraint based optimization technique. This paper describes our detailed methodology and presents the results of modelling and optimization across categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源