论文标题
循环筛和绕谐波
Cyclic sieving and orbit harmonics
论文作者
论文摘要
轨道谐波是组合代表理论的一种工具,它通过在有限的套装上促进了线性组$ g $在$ g $ x $中的$ g $ $ g $ a $ g $ g $ stable Point locus中的$ g $ $ g $的($ g $)的($ g $)的($ g $)的(未分类)的动作(未分级)的工具。环状筛分现象是枚举组合物中的一个概念,它封装了有限环状$ c $ C $ C $ C $在有限套装$ x $上的固定点结构中,从辅助多项式$ x(q)$的辅助辅助评估方面。我们应用轨道谐波来证明循环筛分结果。
Orbit harmonics is a tool in combinatorial representation theory which promotes the (ungraded) action of a linear group $G$ on a finite set $X$ to a graded action of $G$ on a polynomial ring quotient by viewing $X$ as a $G$-stable point locus in $\mathbb{C}^n$. The cyclic sieving phenomenon is a notion in enumerative combinatorics which encapsulates the fixed-point structure of the action of a finite cyclic group $C$ on a finite set $X$ in terms of root-of-unity evaluations of an auxiliary polynomial $X(q)$. We apply orbit harmonics to prove cyclic sieving results.