论文标题
对角线多变量家族的收缩估计
Shrinkage Estimation for the Diagonal Multivariate Exponential Families
论文作者
论文摘要
我们研究了一类多元分布的平均参数的收缩估计,相应协方差矩阵的对角线条目是平均参数的某些二次函数。这类分布包括对角线多元天然指数式家庭。我们建议对相应风险的平均值和构造无偏估计量进行两类半参数收缩估计量。我们确定了这些收缩估计量在平方错误损失下的渐近一致性和收敛速率,因为$ n $,样本量和$ p $,尺寸倾向于无穷大。接下来,我们将这些结果专门用于对角线多元天然指数家族,这些家族被归类为由正常,泊松,伽玛,多项式,负面多项式和混合分布类别组成。我们在正常,伽马和负面的多项式情况下建立了估计量的一致性,但条件下$ p n^{ - 1/3}(\ log {n})^{4/3} \ to 0 $,以及在poisson and MultiNomial情况下,如果$ p n^{ - 1/2} \ 0 $ n $ n $ n,则提供了模拟研究来评估估计器的性能,我们说明,在伽马和泊松案例中,我们的估计器的风险低于最大似然估计器,从而证明了我们的估计器优于最大似然估计器。
We study shrinkage estimation of the mean parameters of a class of multivariate distributions for which the diagonal entries of the corresponding covariance matrix are certain quadratic functions of the mean parameter. This class of distributions includes the diagonal multivariate natural exponential families. We propose two classes of semi-parametric shrinkage estimators for the mean and construct unbiased estimators of the corresponding risk. We establish the asymptotic consistency and convergence rates for these shrinkage estimators under squared error loss as both $n$, the sample size, and $p$, the dimension, tend to infinity. Next, we specialize these results to the diagonal multivariate natural exponential families, which have been classified as consisting of the normal, Poisson, gamma, multinomial, negative multinomial, and hybrid classes of distributions. We establish the consistency of our estimators in the normal, gamma, and negative multinomial cases subject to the condition that $p n^{-1/3} (\log{n})^{4/3} \to 0$, and in the Poisson and multinomial cases if $p n^{-1/2} \to 0$, as $n,p \to \infty$. Simulation studies are provided to evaluate the performance of our estimators and we illustrate that, in the gamma and Poisson cases, our estimators achieve lower risk than the maximum likelihood estimator, thereby demonstrating the superiority of our estimators over the maximum likelihood estimator.