论文标题

在经典通道上保护两方量子计算

Secure Two-Party Quantum Computation Over Classical Channels

论文作者

Ciampi, Michele, Cojocaru, Alexandru, Kashefi, Elham, Mantri, Atul

论文摘要

安全的两党计算考虑了两个方的问题,该问题计算其私人输入的联合函数,而无需揭示超出输出的任何内容。在这项工作中,我们考虑了只有经典渠道可以交流的两方(经典的爱丽丝和量子BOB)的设置。我们的第一个结果表明,在恶意量子对手的情况下,通常不可能通过黑框模拟实现两方量子功能。特别是,我们表明,仅依赖经典通道的安全量子计算协议的存在与量子无关参数相矛盾。 在三种不同的方法之后,我们避免了这种不可能。首先是考虑一个称为单方面模拟安全性的较弱的安全性概念。该概念在基于标准的基于模拟的感觉中保护了一个方(量子BOB)的输入,并保护另一方的投入(经典爱丽丝)的隐私。我们展示了如何实现一个满足这一概念的协议,该协议依赖于错误假设的学习。避免不可能结果的第二种方法,同时也针对恶意BOB提供了基于标准的模拟安全性,是假设量子输入具有有效的经典表示。 最后,我们将注意力集中在零知识功能的类别上,并提供了一个编译器,该编译器将QMA关系R的经典量子知识证明(POQK)协议作为输入,并输出可以通过经典派对来验证的R的零知识POQK。我们结果的直接含义是,Mahadev对量子计算的经典验证的协议(focs'18)可以将其转变为具有经典验证器的量子知识的零知识证明。据我们所知,我们是第一个实例化这种原始的人。

Secure two-party computation considers the problem of two parties computing a joint function of their private inputs without revealing anything beyond the output. In this work, we consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel. Our first result shows that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries. In particular, we show that the existence of a secure quantum computing protocol that relies only on classical channels would contradict the quantum no-cloning argument. We circumvent this impossibility following three different approaches. The first is by considering a weaker security notion called one-sided simulation security. This notion protects the input of one party (the quantum Bob) in the standard simulation-based sense and protects the privacy of the other party's input (the classical Alice). We show how to realize a protocol that satisfies this notion relying on the learning with errors assumption. The second way to circumvent the impossibility result, while at the same time providing standard simulation-based security also against a malicious Bob, is by assuming that the quantum input has an efficient classical representation. Finally, we focus our attention on the class of zero-knowledge functionalities and provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties. The direct implication of our result is that Mahadev's protocol for classical verification of quantum computations (FOCS'18) can be turned into a zero-knowledge proof of quantum knowledge with classical verifiers. To the best of our knowledge, we are the first to instantiate such a primitive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源