论文标题

锦标赛中的道路力量的注释

A Note on Powers of Paths in Tournaments

论文作者

Draganić, Nemanja, Correia, David Munhá, Sudakov, Benny

论文摘要

在本说明中,我们表明,$ n $ Vertices上的每场比赛都包含$ k $ - $ k $ the的电源,其长度为$ n/2^{6k+7} $,它在Scott和Scott和Korándi的最新界限上有所改善,为$ N/2^{2^{2^{3K}}} $。通过这样做,我们获得了对$ k $的反指数依赖,这是Yuster最近显示的$ kN/{2^{k/2}} $的上限。

In this note we show that every tournament on $n$ vertices contains the $k$-th power of a directed path of length $n/2^{6k+7}$, which improves upon the recent bound of Scott and Korándi of $n/2^{2^{3k}}$. By doing so, we get an inverse exponential dependence on $k$, which is best possible as Yuster recently showed an upper bound of $kn/{2^{k/2}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源