论文标题

无分配决策的紧身尾巴概率范围

Tight tail probability bounds for distribution-free decision making

论文作者

Roos, Ernst, Brekelmans, Ruud, van Eekelen, Wouter, Hertog, Dick den, van Leeuwaarden, Johan

论文摘要

Chebyshev的不平等基于其平均值和差异,在随机变量的尾部概率上提供了上限。虽然很紧张,但不平等的批评仅是由于滥用基础支持无限制的病理分布而被批评,并且在许多应用中并不被认为是现实的。我们在尾巴概率上提供了替代的紧密下限和上限,鉴于随机变量的有界支持,平均值和平均绝对偏差。我们将这些界限作为半无限线性程序的精确解决方案。我们利用界限进行新闻供应商模型,垄断定价和停止损失再保险的无分配分析。我们还利用边界来安全地近似相关的随机变量总和,并找到对分布强大优化无处不在的单个和关节模棱两可的机会约束的凸了。

Chebyshev's inequality provides an upper bound on the tail probability of a random variable based on its mean and variance. While tight, the inequality has been criticized for only being attained by pathological distributions that abuse the unboundedness of the underlying support and are not considered realistic in many applications. We provide alternative tight lower and upper bounds on the tail probability given a bounded support, mean and mean absolute deviation of the random variable. We obtain these bounds as exact solutions to semi-infinite linear programs. We leverage the bounds for distribution-free analysis of the newsvendor model, monopolistic pricing, and stop-loss reinsurance. We also exploit the bounds for safe approximations of sums of correlated random variables, and to find convex reformulations of single and joint ambiguous chance constraints that are ubiquitous in distributionally robust optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源