论文标题

R-GAP:对隐私的递归梯度攻击

R-GAP: Recursive Gradient Attack on Privacy

论文作者

Zhu, Junyi, Blaschko, Matthew

论文摘要

联邦学习框架被认为是打破隐私需求与从大量分布式数据收集中学习的希望之间的困境的一种有希望的方法。许多这样的框架仅要求合作者分享他们的本地模型的本地更新,即相对于本地存储的数据梯度,而不是将其原始数据公开给其他合作者。但是,最近基于优化的梯度攻击表明,通常可以从梯度中准确恢复原始数据。已经表明,将真实梯度与根据估计数据计算的梯度之间的欧几里得距离最小化通常在完全恢复私人数据方面有效。但是,对渐变如何以及何时导致独特的原始数据恢复的理论理解根本缺乏理论上的理解。我们的研究通过提供封闭形式的递归程序来填补这一空白,以从深神经网络中的梯度中恢复数据。我们将其命名为递归梯度攻击隐私(R-GAP)。实验结果表明,在某些条件下,在计算的一小部分中,RAP的起作用,甚至比优化的方法更具功能,甚至更好。此外,我们提出了一种等级分析方法,该方法可用于估算某些网络体系结构固有的梯度攻击风险,而不管是使用基于优化的基于优化的还是封闭形式的攻击。实验结果证明了等级分析对提高网络安全性的实用性。源代码可从https://github.com/junyizhu-ai/r-gap下载。

Federated learning frameworks have been regarded as a promising approach to break the dilemma between demands on privacy and the promise of learning from large collections of distributed data. Many such frameworks only ask collaborators to share their local update of a common model, i.e. gradients with respect to locally stored data, instead of exposing their raw data to other collaborators. However, recent optimization-based gradient attacks show that raw data can often be accurately recovered from gradients. It has been shown that minimizing the Euclidean distance between true gradients and those calculated from estimated data is often effective in fully recovering private data. However, there is a fundamental lack of theoretical understanding of how and when gradients can lead to unique recovery of original data. Our research fills this gap by providing a closed-form recursive procedure to recover data from gradients in deep neural networks. We name it Recursive Gradient Attack on Privacy (R-GAP). Experimental results demonstrate that R-GAP works as well as or even better than optimization-based approaches at a fraction of the computation under certain conditions. Additionally, we propose a Rank Analysis method, which can be used to estimate the risk of gradient attacks inherent in certain network architectures, regardless of whether an optimization-based or closed-form-recursive attack is used. Experimental results demonstrate the utility of the rank analysis towards improving the network's security. Source code is available for download from https://github.com/JunyiZhu-AI/R-GAP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源