论文标题

图像美学得分分布预测的深层漂移扩散模型

A Deep Drift-Diffusion Model for Image Aesthetic Score Distribution Prediction

论文作者

Jin, Xin, Li, Xiqiao, Huang, Heng, Li, Xiaodong, Zhou, Xinghui

论文摘要

审美质量评估的任务由于其主观性而变得复杂。近年来,图像美学质量的目标表示已从一维二元分类标签或数值分数变为多维得分分布。根据当前的方法,地面真相评分分布是直接回归的。但是,没有考虑到美学的主观性,也就是说,没有考虑人类的心理过程,这限制了任务的绩效。在本文中,我们提出了一个受心理学家启发的深层漂移扩散(DDD)模型,以预测图像中的美学得分分布。 DDD模型可以描述美学感知的心理过程,而不是评估结果的传统建模。我们使用深层卷积神经网络来回归漂移扩散模型的参数。大规模美学图像数据集的实验结果表明,我们的新型DDD模型很简单但有效,这表现出了美学得分分布预测中最新方法的表现。此外,我们的模型也可以预测不同的心理过程。

The task of aesthetic quality assessment is complicated due to its subjectivity. In recent years, the target representation of image aesthetic quality has changed from a one-dimensional binary classification label or numerical score to a multi-dimensional score distribution. According to current methods, the ground truth score distributions are straightforwardly regressed. However, the subjectivity of aesthetics is not taken into account, that is to say, the psychological processes of human beings are not taken into consideration, which limits the performance of the task. In this paper, we propose a Deep Drift-Diffusion (DDD) model inspired by psychologists to predict aesthetic score distribution from images. The DDD model can describe the psychological process of aesthetic perception instead of traditional modeling of the results of assessment. We use deep convolution neural networks to regress the parameters of the drift-diffusion model. The experimental results in large scale aesthetic image datasets reveal that our novel DDD model is simple but efficient, which outperforms the state-of-the-art methods in aesthetic score distribution prediction. Besides, different psychological processes can also be predicted by our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源