论文标题

GMH:kg完成的一般多跳的推理模型

GMH: A General Multi-hop Reasoning Model for KG Completion

论文作者

Zhang, Yao, Liang, Hongru, Jatowt, Adam, Lei, Wenqiang, Wei, Xin, Jiang, Ning, Yang, Zhenglu

论文摘要

知识图对于众多下游自然语言处理应用至关重要,但通常没有许多事实缺失。这导致了多跳推理任务的研究工作,可以将其作为搜索过程进行配置,而当前模型通常执行短距离推理。但是,长距离推理对于连接表面无关的实体的能力也至关重要。据我们所知,缺乏一个通用框架,该框架在混合的长距离推理方案中处理多跳的推理。我们认为,多跳的推理模型有两个关键问题:i)去哪里,ii)何时停止。因此,我们提出了一个通用模型,该模型可以通过三个模块解决问题:1)局部全球知识模块以估计可能的路径,2)差异化的动作辍学模块以探索各种路径,以及3)自适应停止搜索模块以避免过度搜索。在三个数据集上的全面结果证明了我们的模型的优势,并在短距离和长距离推理方案中都对基线进行了重大改进。

Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search process and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源