论文标题
EIC(专家信息标准)不是AIC:谨慎的生物学家模型选择指南
EIC (Expert Information Criterion) not AIC: the cautious biologist's guide to model selection
论文作者
论文摘要
1.许多生物学研究计划的目标是从大型复杂数据集中提取有意义的见解。生态学,进化和行为(EEB)的研究人员经常应对长期观察数据集,从中,他们构建了模型来解决有关生物学的基本问题。同样,流行病学家分析了大型复杂的观察数据集,以了解人类健康和疾病的分布和决定因素。这两个不同的生物学领域的分析工作流程的关键区别是描述数据分析任务和显式使用因果推理方法,该方法被流行病学家广泛采用。 2.在这里,我们回顾了最新的因果推论文献,并描述了对EEB研究人员直接应用的分析工作流程。 3.本评论的上半年定义了四个不同的分析任务(描述,预测,关联和因果推断),以及相应的数据分析和模型选择方法。后半部分致力于引导读者进行休闲推断的步骤,重点介绍EEB的示例。 4.对因果推理的因果推论和因果推理任务的共同误解而产生的兴趣不断增加,我们旨在促进纪律孤岛之间的思想交换,并为所有数据分析提供一个框架,尽管与观察数据特别相关。
1.A goal of many research programs in biology is to extract meaningful insights from large, complex data sets. Researchers in Ecology, Evolution and Behavior (EEB) often grapple with long-term, observational data sets from which they construct models to address fundamental questions about biology. Similarly, epidemiologists analyze large, complex observational data sets to understand the distribution and determinants of human health and disease. A key difference in the analytical workflows for these two distinct areas of biology is delineation of data analysis tasks and explicit use of causal inference methods, widely adopted by epidemiologists. 2.Here, we review the most recent causal inference literature and describe an analytical workflow that has direct applications for EEB researchers. 3.The first half of this commentary defines four distinct analytical tasks (description, prediction, association, and causal inference), and the corresponding approaches to data analysis and model selection. The latter half is dedicated to walking the reader through the steps of casual inference, focusing on examples from EEB. 4.Given increasing interest in causal inference and common misperceptions regarding the task of causal inference, we aim to facilitate an exchange of ideas between disciplinary silos and provide a framework for analyses of all data, though particularly relevant for observational data.