论文标题

电池寿命预后的数据驱动方法的承诺和挑战

Promise and Challenges of a Data-Driven Approach for Battery Lifetime Prognostics

论文作者

Sulzer, Valentin, Mohtat, Peyman, Lee, Suhak, Siegel, Jason B., Stefanopoulou, Anna G.

论文摘要

最近,数据驱动的方法通过利用放电电压曲线的特征来早期预测电池周期寿命的潜力。但是,这些研究警告说,必须将数据驱动的方法与实验的特定设计相结合,以限制衰老条件的范围,因为锂离子电池的预期寿命是各种老化因素的复杂功能。在这项工作中,我们研究了在各种衰老条件下循环的锂离子电池电池寿命预后的数据驱动方法的性能,以确定何时可以成功应用数据驱动的方法。结果表明,放电能力差异的方差与在广泛的电荷/放电C速率和工作温度下老化的细胞的寿命之间的相关性。尽管不仅使用不同的条件来循环电池,还可以获得特征:这些特征是直接从骑自行车数据中计算出的,而没有单独的慢速表征循环在受控温度下直接计算出来。但是,当减少特征提取的电压数据窗口或使用电荷电压曲线而不是放电的特征时,相关性会大大削弱。由于在实践中很少发生恒定恒流的排放,因此在现实世界中将这种方法应用到现实系统中构成了新的挑战。

Recent data-driven approaches have shown great potential in early prediction of battery cycle life by utilizing features from the discharge voltage curve. However, these studies caution that data-driven approaches must be combined with specific design of experiments in order to limit the range of aging conditions, since the expected life of Li-ion batteries is a complex function of various aging factors. In this work, we investigate the performance of the data-driven approach for battery lifetime prognostics with Li-ion batteries cycled under a variety of aging conditions, in order to determine when the data-driven approach can successfully be applied. Results show a correlation between the variance of the discharge capacity difference and the end-of-life for cells aged under a wide range of charge/discharge C-rates and operating temperatures. This holds despite the different conditions being used not only to cycle the batteries but also to obtain the features: the features are calculated directly from cycling data without separate slow characterization cycles at a controlled temperature. However, the correlation weakens considerably when the voltage data window for feature extraction is reduced, or when features from the charge voltage curve instead of discharge are used. As deep constant-current discharges rarely happen in practice, this imposes new challenges for applying this method in a real-world system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源