论文标题

具有低成本惯性测量单元的数据融合算法的开发和验证,以分析手动工人的肩部运动

Development and Validation of a Data Fusion Algorithm with Low-Cost Inertial Measurement Units to Analyze Shoulder Movements in Manual Workers

论文作者

Boyer, Marianne, Frasie, Antoine, Bouyer, Laurent, Roy, Jean-Sébastien, Poitras, Isabelle, Campeau-Lecours, Alexandre

论文摘要

与工作有关的上肢肌肉骨骼疾病(扭曲)是现代社会的主要问题,因为它们会影响工人的生活质量并导致缺勤和生产力丧失。根据在北美和西欧进行的研究,在过去的几十年中,其流行率有所提高。这项挑战需要改善预防方法。一个途径是通过开发可穿戴传感器系统来分析工人的运动并向工人和/或临床医生提供反馈。这样的系统可以减少体力劳动的需求,并最终防止肌肉骨骼疾病。本文介绍了惯性测量单元的数据融合算法的开发和验证,以分析工人的手臂高程。该算法是在两个商业传感器系统(Actigraph GT9X和LSM9DS1)上实施的,并将结果与​​经过验证的商业传感器(XSENS MVN系统)的数据融合结果进行了比较。互相关分析[R],根平方误差(RMSE)和估计的平均绝对误差用于建立算法的构造有效性。五个受试者分别执行了十个不同的手臂高程任务。结果表明,该算法有效地评估两个不同传感器的结果与商业传感器的结果之间具有高相关性的肩部运动(0.900-0.998)和十个任务的RMSE值相对较低(1.66-11.24°)。因此,提出的数据融合算法可用于估计手臂抬高。

Work-related upper extremity musculoskeletal disorders (WRUED) are a major problem in modern societies as they affect the quality of life of workers and lead to absenteeism and productivity loss. According to studies performed in North America and Western Europe, their prevalence has increased in the last few decades. This challenge calls for improvements in prevention methods. One avenue is through the development of wearable sensor systems to analyze worker's movements and provide feedback to workers and/or clinicians. Such systems could decrease the physical work demands and ultimately prevent musculoskeletal disorders. This paper presents the development and validation of a data fusion algorithm for inertial measurement units to analyze worker's arm elevation. The algorithm was implemented on two commercial sensor systems (Actigraph GT9X and LSM9DS1) and results were compared with the data fusion results from a validated commercial sensor (XSens MVN system). Cross-correlation analyses [r], root-mean-square error (RMSE) and average absolute error of estimate were used to establish the construct validity of the algorithm. Five subjects each performed ten different arm elevation tasks. The results show that the algorithm is valid to evaluate shoulder movements with high correlations between the results of the two different sensors and the commercial sensor (0.900-0.998) and relatively low RMSE value for the ten tasks (1.66-11.24°). The proposed data fusion algorithm could thus be used to estimate arm elevation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源