论文标题

骨架桥接点完成:从全球推理到本地调整

Skeleton-bridged Point Completion: From Global Inference to Local Adjustment

论文作者

Nie, Yinyu, Lin, Yiqun, Han, Xiaoguang, Guo, Shihui, Chang, Jian, Cui, Shuguang, Zhang, Jian Jun

论文摘要

点完成是指从部分点云中完成对象缺失的几何形状。现有作品通常通过解码从输入点编码的潜在特征来估计缺失形状。但是,现实世界中的物体通常具有多种拓扑和表面细节,潜在特征可能无法代表以恢复清洁和完整的表面。为此,我们提出了一个骨架桥接点完成网络(SK-PCN),以进行形状完成。考虑到部分扫描,我们的方法首先预测其3D骨骼以获得全局结构,并通过从骨骼点学习位移来完成表面。我们将形状的完成将结构估计和表面重建分解为结构,从而减轻了学习难度,并使我们获得地下细节的方法受益。此外,考虑到编码输入点期间缺少的功能,SK-PCN采用了局部调整策略,将输入点云合并为我们的表面细化预测。与以前的方法相比,我们的骨骼桥梁方式更好地支持点正常估计,以获得超出点云的完整表面网格。点云和网格完成的定性和定量实验表明,我们的方法在各种对象类别上的现有方法的表现优于现有方法。

Point completion refers to complete the missing geometries of objects from partial point clouds. Existing works usually estimate the missing shape by decoding a latent feature encoded from the input points. However, real-world objects are usually with diverse topologies and surface details, which a latent feature may fail to represent to recover a clean and complete surface. To this end, we propose a skeleton-bridged point completion network (SK-PCN) for shape completion. Given a partial scan, our method first predicts its 3D skeleton to obtain the global structure, and completes the surface by learning displacements from skeletal points. We decouple the shape completion into structure estimation and surface reconstruction, which eases the learning difficulty and benefits our method to obtain on-surface details. Besides, considering the missing features during encoding input points, SK-PCN adopts a local adjustment strategy that merges the input point cloud to our predictions for surface refinement. Comparing with previous methods, our skeleton-bridged manner better supports point normal estimation to obtain the full surface mesh beyond point clouds. The qualitative and quantitative experiments on both point cloud and mesh completion show that our approach outperforms the existing methods on various object categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源