论文标题
在diquark观众模型中的亚物质运动学和验证的共线性分解
Collinear Factorization at sub-asymptotic kinematics and validation in a diquark spectator model
论文作者
论文摘要
我们重新审视了在四个动量转移平方的亚物质散射的深度非弹性散射的推导,在这种情况下,参与相互作用的粒子的质量不能忽略。通过使用包容性的喷气函数来描述散落的夸克最终状态,我们可以将所需的Parton运动学近似仅限于硬散射过程的四弹药保护,并明确扩展其余图,以未观察到的Parton横向动量而不是忽略这些图。与标准推导相比,该过程为固定散射和后退的部分的虚拟性提供了更大的灵活性,并且自然导致缩放变量比Bjorken的XB变量更忠实地代表亚物质能量的partsonic运动学变量。 然后,我们通过考虑旨在重现量子铬铬 - 动力学中的$ x_b $ x_b $以电子散射的主要特征来验证获得的分解公式的有效性。在模型中,可以明确分离并通过分析计算的深度非弹性散射贡献,然后将其与分解的近似值进行比较。然后,我们将自己限制在领先的扭曲贡献中,然后证明新缩放变量的使用最大化了共线分解的有效性的运动学范围,并突出了这种方法的固有局限性,这是由于不可避免地近似于分解图表中四个动量保护的处理。最后,我们简要讨论如何通过在分解计算中包括更高的扭转校正来克服这些局限性。
We revisit the derivation of collinear factorization for Deep Inelastic Scattering at sub-asymptotic values of the four momentum transfer squared, where the masses of the particles participating in the interaction cannot be neglected. By using an inclusive jet function to describe the scattered quark final state, we can restrict the needed parton kinematic approximations just to the four-momentum conservation of the hard scattering process, and explicitly expand the rest of the diagram in powers of the unobserved parton transverse momenta rather than neglecting those. This procedure provides one with more flexibility in fixing the virtuality of the scattered and recoiling partons than in the standard derivation, and naturally leads to scaling variables that more faithfully represent the partonic kinematic at sub-asymptotic energy than the Bjorken's xB variable. We then verify the validity of the obtained factorization formula by considering a diquark spectator model designed to reproduce the main features of electron-proton scattering at large $x_B$ in Quantum Chromo-Dynamics. In the model, the Deep Inelastic Scattering contribution to the cross section can be explicitly isolated and analytically calculated, then compared to the factorized approximation. Limiting ourselves to the leading twist contribution, we then show that use of the new scaling variables maximizes the kinematic range of validity of collinear factorization, and highlight the intrinsic limitations of this approach due to the unavoidably approximate treatment of four momentum conservation in factorized diagrams. Finally, we briefly discuss how these limitations may be overcome by including higher-twist corrections to the factorized calculation.