论文标题

空间各向同性的曲率条件

Curvature conditions for spatial isotropy

论文作者

Tzanavaris, Kostas, Seoane, Pau Amaro

论文摘要

在数学宇宙学的背景下,对于(广义)Robertson-Walker时空的半摩尼亚歧管的必要条件的研究很重要。特别是,这是开发初始数据以复制或近似标准宇宙学模型的要求。通常,这些条件涉及爱因斯坦场方程,如果人们认为重力理论或耦合物质场发生变化,它们会改变。因此,不依赖场方程的条件的推导是一个优势。在这项工作中,我们提出了这种条件的几何派生。我们需要存在单位矢量场来区分两个(非平等)截面曲率的空间点。这对于Riemann Tensor采用特定形式是等效的。我们的几何方法在相同维度,曲率和度量张量符号的空间与罗伯逊步行器空间之间产生局部等轴测图(度量张量最大的子空间的维度为负明确)。值得注意的是,如果空间是简单连接的,则等距为全局。我们的结果推广到非恒定曲率的一类空间的定理,即相同恒定曲率,尺寸和度量张量符号的空间必须是局部等距的。因为我们对场方程,物质场或度量张量符号没有任何假设,所以人们可以很容易地使用此结果来研究替代性重力理论或不同物质领域的宇宙学模型。

In the context of mathematical cosmology, the study of necessary and sufficient conditions for a semi-Riemannian manifold to be a (generalised) Robertson-Walker space-time is important. In particular, it is a requirement for the development of initial data to reproduce or approximate the standard cosmological model. Usually these conditions involve the Einstein field equations, which change if one considers alternative theories of gravity or if the coupling matter fields change. Therefore, the derivation of conditions which do not depend on the field equations is an advantage. In this work we present a geometric derivation of such a condition. We require the existence of a unit vector field to distinguish at each point of space two (non-equal) sectional curvatures. This is equivalent for the Riemann tensor to adopt a specific form. Our geometrical approach yields a local isometry between the space and a Robertson-Walker space of the same dimension, curvature and metric tensor sign (the dimension of the largest subspace on which the metric tensor is negative definite). Remarkably, if the space is simply-connected, the isometry is global. Our result generalize to a class of spaces of non-constant curvature the theorem that spaces of the same constant curvature, dimension and metric tensor sign must be locally isometric. Because we do not make any assumptions regarding field equations, matter fields or metric tensor sign, one can readily use this result to study cosmological models within alternative theories of gravity or with different matter fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源