论文标题

重型车辆的强大路径跟踪控制设计基于多对象的进化优化

Robust path-following control design of heavy vehicles based on multiobjective evolutionary optimization

论文作者

de Morais, Gustavo Alves Prudencio, Marcos, Lucas Barbosa, Barbosa, Filipe Marques, Barbosa, Bruno Henrique Groenner, Terra, Marco Henrique, Grassi Jr, Valdir

论文摘要

处理系统不确定性的能力是在不受限制的环境中重型自动驾驶车辆的重要问题。从这个意义上讲,强大的控制器被证明对自主导航有效。但是,此类系统的不确定性矩阵通常由代数方法定义,这些方法需要对系统动力学的先验知识。在这种情况下,控制系统设计人员取决于不确定模型的质量,以获得最佳的控制性能。这项工作提出了一个通过多目标优化设计的可靠递归控制器,以克服这些缺点。此外,提出了多物镜优化问题的本地搜索方法。该方法适用于文献中已经建立的任何多物镜进化算法。结果表明,基于模型的控制器和机器学习的这种组合在稳健性,稳定性和平稳性方面提高了系统的有效性。

The ability to deal with systems parametric uncertainties is an essential issue for heavy self-driving vehicles in unconfined environments. In this sense, robust controllers prove to be efficient for autonomous navigation. However, uncertainty matrices for this class of systems are usually defined by algebraic methods which demand prior knowledge of the system dynamics. In this case, the control system designer depends on the quality of the uncertain model to obtain an optimal control performance. This work proposes a robust recursive controller designed via multiobjective optimization to overcome these shortcomings. Furthermore, a local search approach for multiobjective optimization problems is presented. The proposed method applies to any multiobjective evolutionary algorithm already established in the literature. The results presented show that this combination of model-based controller and machine learning improves the effectiveness of the system in terms of robustness, stability and smoothness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源