论文标题
反对其他人!检测道德愤怒的暂时性媒体网络
Against the Others! Detecting Moral Outrage inSocial Media Networks
论文作者
论文摘要
Twitter上的在线大火似乎是对人,公司,媒体运动和政客的愤怒。道德上的愤怒会对一个单一的论点,一个单词或导致仇恨言论的人的一个行动产生过度的集体侵略性。通过集体“反对其他人”,负面动力通常会开始。使用Twitter的数据,我们探索了几次大火爆发的起点。作为一个社交媒体平台,有数亿用户在世界各地的主题和活动上实时互动,Twitter是一个在线讨论的社交传感器,并以快速且经常情感上的争议而闻名。我们在本文中提出的主要问题是我们是否可以检测出大火的爆发。在Twitter上给定了21个在线大火,有关异常检测的关键问题是:1)我们如何检测变化点? 2)我们如何区分引起道德愤怒的特征?在本文中,我们研究了这些挑战,开发了一种方法,以系统地检测变化点在推文的语言提示上。我们能够尽早发现火灾爆发,仅通过应用语言提示来检测。我们工作的结果可以帮助检测负面动力,并可能有可能使个人,公司和政府减轻社交媒体网络中的仇恨。
Online firestorms on Twitter are seemingly arbitrarily occurring outrages towards people, companies, media campaigns and politicians. Moral outrages can create an excessive collective aggressiveness against one single argument, one single word, or one action of a person resulting in hateful speech. With a collective "against the others" the negative dynamics often start. Using data from Twitter, we explored the starting points of several firestorm outbreaks. As a social media platform with hundreds of millions of users interacting in real-time on topics and events all over the world, Twitter serves as a social sensor for online discussions and is known for quick and often emotional disputes. The main question we pose in this article, is whether we can detect the outbreak of a firestorm. Given 21 online firestorms on Twitter, the key questions regarding the anomaly detection are: 1) How can we detect the changing point? 2) How can we distinguish the features that cause a moral outrage? In this paper we examine these challenges developing a method to detect the point of change systematically spotting on linguistic cues of tweets. We are able to detect outbreaks of firestorms early and precisely only by applying linguistic cues. The results of our work can help detect negative dynamics and may have the potential for individuals, companies, and governments to mitigate hate in social media networks.