论文标题
磁扰动和辐射对失控的雪崩的影响
Effects of magnetic perturbations and radiation on the runaway avalanche
论文作者
论文摘要
等离子体中的电子失控现象取决于动量空间动力学。但是,对涉及失控电子的系统的全局演变有效模拟通常需要减少流体描述。例如,在设计Tokamaks的基本失控方法中所需的这是必需的。在本文中,我们提出了一种方法,将动量依赖的空间传输效果包括在失控的雪崩增长率中。我们量化了在随机磁场中电子扩散存在下的生长速率的降低,并表明空间运输可以提高有效的关键电场。使用扰动方法,我们得出了一组方程式,该方程允许在血浆参数存在径向变化的情况下处理空间传输对失控动态的影响。然后,这用于证明在当前淬灭模拟中对带有大量材料注入的ITER样等离子体的空间转运的作用。我们发现,由于中等杂质和氘注射,在有足够缓慢的电流淬火的情况下,磁扰动的存在大大降低了最终失控电流。除非失控的一代是离轴的,在这种情况下,在边缘局部局部的扰动无效地抑制了逃亡者,在这种情况下,它们可能导致在受限和扰动区域的接口处形成强电流板。
The electron runaway phenomenon in plasmas depends sensitively on the momentum-space dynamics. However, efficient simulation of the global evolution of systems involving runaway electrons typically requires a reduced fluid description. This is needed for example in the design of essential runaway mitigation methods for tokamaks. In this paper, we present a method to include the effect of momentum-dependent spatial transport in the runaway avalanche growth rate. We quantify the reduction of the growth rate in the presence of electron diffusion in stochastic magnetic fields and show that the spatial transport can raise the effective critical electric field. Using a perturbative approach we derive a set of equations that allows treatment of the effect of spatial transport on runaway dynamics in the presence of radial variation in plasma parameters. This is then used to demonstrate the effect of spatial transport in current quench simulations for ITER-like plasmas with massive material injection. We find that in scenarios with sufficiently slow current quench, due to moderate impurity and deuterium injection, the presence of magnetic perturbations reduces the final runaway current considerably. Perturbations localized at the edge are not effective in suppressing the runaways, unless the runaway generation is off-axis, in which case they may lead to formation of strong current sheets at the interface of the confined and perturbed regions.