论文标题
在仪器变量回归中学习深度功能
Learning Deep Features in Instrumental Variable Regression
论文作者
论文摘要
仪器变量(IV)回归是一种标准策略,用于通过利用仪器变量来学习混杂处理和结果变量之间的因果关系,这仅通过治疗影响结果。在经典的IV回归中,学习分为两个阶段:第1阶段进行线性回归,从仪器到治疗;第2阶段进行了从治疗到结局的线性回归,并以仪器为条件。我们提出了一种新颖的方法,即深度特征仪器变量回归(DFIV),以解决工具,治疗和结果之间关系之间的关系可能是非线性的情况。在这种情况下,深度神经网受到培训,以定义仪器和治疗中的内容丰富的非线性特征。我们为这些功能提出了一个交替的训练制度,以确保撰写第1阶段和第2阶段时良好的端到端性能,从而以计算有效的方式获得高度灵活的特征图。 DFIV的表现优于最新的最新方法,包括挑战IV基准测试,包括涉及高维图像数据的设置。 DFIV还在强化学习的非政策政策评估中表现出竞争性表现,这可以理解为IV回归任务。
Instrumental variable (IV) regression is a standard strategy for learning causal relationships between confounded treatment and outcome variables from observational data by utilizing an instrumental variable, which affects the outcome only through the treatment. In classical IV regression, learning proceeds in two stages: stage 1 performs linear regression from the instrument to the treatment; and stage 2 performs linear regression from the treatment to the outcome, conditioned on the instrument. We propose a novel method, deep feature instrumental variable regression (DFIV), to address the case where relations between instruments, treatments, and outcomes may be nonlinear. In this case, deep neural nets are trained to define informative nonlinear features on the instruments and treatments. We propose an alternating training regime for these features to ensure good end-to-end performance when composing stages 1 and 2, thus obtaining highly flexible feature maps in a computationally efficient manner. DFIV outperforms recent state-of-the-art methods on challenging IV benchmarks, including settings involving high dimensional image data. DFIV also exhibits competitive performance in off-policy policy evaluation for reinforcement learning, which can be understood as an IV regression task.