论文标题
一类径向聚焦的散射理论不均匀的哈特里方程
Scattering theory for a class of radial focusing inhomogeneous Hartree equations
论文作者
论文摘要
本文研究了全球解决方案对广义hartree方程的渐近行为$$ i \ dot u+Δu+(i_α*| \ cdot | \ cdot |^b |^b | u |^p)| X |^|^|^b |^b |^{p-2} u = 0。$ $ = 0。确实,确实使用\ cite \ cite {dm},sope s soptem of saterem of saterm in of saterm,具有径向设置的质量至关重要和能量亚临界机制。
This paper studies the asymptotic behavior of global solutions to the generalized Hartree equation $$i\dot u+Δu+(I_α*|\cdot|^b|u|^p)|x|^b|u|^{p-2}u=0 .$$ Indeed, using a new approach due to \cite{dm}, one proves the scattering of the above inhomogeneous Choquard equation in the mass-super-critical and energy sub-critical regimes with radial setting.