论文标题

黑洞内部和奇异性正则化的对称性

Symmetries of the Black Hole Interior and Singularity Regularization

论文作者

Geiller, Marc, Livine, Etera R., Sartini, Francesco

论文摘要

我们揭示了$ \ mathfrak {iso}(2,1)$poincaré代数,该代数与黑洞内​​部动态有关。这些Noether电荷的作用集成到庞加莱集团ISO $(2,1)$下的引力系统的对称性,该$ $(2,1)$,可以描述黑洞内部几何形状的演变,该几何形状在地球孔和ADS $ {} _ 2 $的地球孔和肉眼方面。在拉格朗日层面,这种对称性对应于适当时间的莫比乌斯转换以及翻译。值得注意的是,这是一种物理对称性,改变了系统的状态,它也自然地形成了更大的$ \ textrm {bms} _ {3} = \ textrm {diff}(s^1)\ ltimes \ textrm \ textrm {vect}(vect}(s^1)$组,其中$ s^1 $ s compactified时间量表。发现黑洞内部的这种结构很有趣,这暗示了BMS对称性对黑洞物理学的基本作用。这种对称的存在提供了一个有力的标准,可以区分不同的正则化和量化方案。遵循循环量子宇宙学,我们确定了黑洞内部的一组正规化变量和哈密顿量,该变量可以解决黑白洞过渡中的奇异性,同时保留相位空间上的庞加莱对称性。这揭开了黑洞对称性的新方面,并为严格的内部量化打开了道路。

We reveal an $\mathfrak{iso}(2,1)$ Poincaré algebra of conserved charges associated with the dynamics of the interior of black holes. The action of these Noether charges integrates to a symmetry of the gravitational system under the Poincaré group ISO$(2,1)$, which allows to describe the evolution of the geometry inside the black hole in terms of geodesics and horocycles of AdS${}_2$. At the Lagrangian level, this symmetry corresponds to Möbius transformations of the proper time together with translations. Remarkably, this is a physical symmetry changing the state of the system, which also naturally forms a subgroup of the much larger $\textrm{BMS}_{3}=\textrm{Diff}(S^1)\ltimes\textrm{Vect}(S^1)$ group, where $S^1$ is the compactified time axis. It is intriguing to discover this structure for the black hole interior, and this hints at a fundamental role of BMS symmetry for black hole physics. The existence of this symmetry provides a powerful criterion to discriminate between different regularization and quantization schemes. Following loop quantum cosmology, we identify a regularized set of variables and Hamiltonian for the black hole interior, which allows to resolve the singularity in a black-to-white hole transition while preserving the Poincaré symmetry on phase space. This unravels new aspects of symmetry for black holes, and opens the way towards a rigorous group quantization of the interior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源