论文标题

电动象征脑计算机界面分类的二进化方法

Binarization Methods for Motor-Imagery Brain-Computer Interface Classification

论文作者

Hersche, Michael, Benini, Luca, Rahimi, Abbas

论文摘要

成功的电动机象征脑计算机界面(MI-BCI)算法要么提取大量手工制作的功能并训练分类器,要么在深度卷积神经网络(CNN)中结合特征提取和分类。两种方法通常都会导致一组实用值的权重,在针对紧密资源约束的设备上实时执行时会构成挑战。我们为每种方法提出了方法,以使实现的权重转换为二进制数字以提高推断。我们的第一种方法基于稀疏的双极随机投影,将大量实价的Riemannian协方差功能投射到二进制空间,在该空间中,也可以通过二进制重量来学习线性SVM分类器。通过调整二进制嵌入的尺寸,与具有Float16重量的型号相比,我们在4级MI($ \ leq $ 1.27%的$ 1.27%)中获得了几乎相同的准确性,但提供了更紧凑的模型,具有更简单的操作以执行。其次,我们建议将记忆增强的神经网络(MANN)用于Mi-BCI,以使增强的内存被二进制。我们的方法使用双极随机投影或学习的投影替换了CNN的完全连接的CNN层。我们对MI-BCI已经紧凑的CNN EEGNET的实验结果表明,使用随机投影可以通过ISO准子的1.28倍压缩。另一方面,使用学习的投影可提供3.89%的精度,但记忆尺寸增加28.10倍。

Successful motor-imagery brain-computer interface (MI-BCI) algorithms either extract a large number of handcrafted features and train a classifier, or combine feature extraction and classification within deep convolutional neural networks (CNNs). Both approaches typically result in a set of real-valued weights, that pose challenges when targeting real-time execution on tightly resource-constrained devices. We propose methods for each of these approaches that allow transforming real-valued weights to binary numbers for efficient inference. Our first method, based on sparse bipolar random projection, projects a large number of real-valued Riemannian covariance features to a binary space, where a linear SVM classifier can be learned with binary weights too. By tuning the dimension of the binary embedding, we achieve almost the same accuracy in 4-class MI ($\leq$1.27% lower) compared to models with float16 weights, yet delivering a more compact model with simpler operations to execute. Second, we propose to use memory-augmented neural networks (MANNs) for MI-BCI such that the augmented memory is binarized. Our method replaces the fully connected layer of CNNs with a binary augmented memory using bipolar random projection, or learned projection. Our experimental results on EEGNet, an already compact CNN for MI-BCI, show that it can be compressed by 1.28x at iso-accuracy using the random projection. On the other hand, using the learned projection provides 3.89% higher accuracy but increases the memory size by 28.10x.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源