论文标题

零售中的消费者行为:使用深神经网络的下一个逻辑购买

Consumer Behaviour in Retail: Next Logical Purchase using Deep Neural Network

论文作者

Verma, Ankur

论文摘要

对于大规模零售公司而言,预测未来的消费者行为是最具挑战性的问题之一。准确预测消费者购买模式可以更好地库存计划和有效的个性化营销策略。最佳库存计划有助于最大程度地减少库存外/过量库存的实例,而智能的个性化营销策略可确保流畅而令人愉快的购物体验。 ML研究人员通常通过推荐系统或传统的ML方法来解决消费者购买预测问题。这种建模方法在预测消费者购买模式方面并不能很好地概括。在本文中,我们介绍了对消费者购买行为的研究,其中,我们建立了一个数据驱动的框架,以预测消费者是否将使用电子商务零售数据在一定时间内购买商品。为了建模这种关系,我们为所有相关的消费者组合创建了一个顺序的时间序列数据。然后,我们通过在消费者,物品和时间的交点上生成功能来构建通用的非线性模型。我们通过尝试不同的神经网络体系结构,ML模型及其组合来证明性能。我们介绍了60种建模实验的结果,以及不同的超参数以及堆叠的概括集合和F1-最大化框架的结果。然后,我们介绍了神经网络体系结构,例如多层感知器,长期记忆(LSTM),时间卷积网络(TCN)和TCN-LSTM,带来了XGBoost和RandomForest等ML模型。

Predicting future consumer behaviour is one of the most challenging problems for large scale retail firms. Accurate prediction of consumer purchase pattern enables better inventory planning and efficient personalized marketing strategies. Optimal inventory planning helps minimise instances of Out-of-stock/ Excess Inventory and, smart Personalized marketing strategy ensures smooth and delightful shopping experience. Consumer purchase prediction problem has generally been addressed by ML researchers in conventional manners, either through recommender systems or traditional ML approaches. Such modelling approaches do not generalise well in predicting consumer purchase pattern. In this paper, we present our study of consumer purchase behaviour, wherein, we establish a data-driven framework to predict whether a consumer is going to purchase an item within a certain time frame using e-commerce retail data. To model this relationship, we create a sequential time-series data for all relevant consumer-item combinations. We then build generalized non-linear models by generating features at the intersection of consumer, item, and time. We demonstrate robust performance by experimenting with different neural network architectures, ML models, and their combinations. We present the results of 60 modelling experiments with varying Hyperparameters along with Stacked Generalization ensemble and F1-Maximization framework. We then present the benefits that neural network architectures like Multi Layer Perceptron, Long Short Term Memory (LSTM), Temporal Convolutional Networks (TCN) and TCN-LSTM bring over ML models like Xgboost and RandomForest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源