论文标题
在各种温度i:热结构和宽带相曲线预测的三维模型中的云
Clouds in Three-Dimensional Models of Hot Jupiters Over a Wide Range of Temperatures I: Thermal Structures and Broadband Phase Curve Predictions
论文作者
论文摘要
使用一般循环模型(GCM),我们研究了一系列辐射温度(1,500-4,000 K),表面重力(10和40 M S -2)和云条件的模拟热木星气氛的趋势。我们的模型包括具有辐射反馈的简化依赖温度的云层,并通过可能增加行星反照率,降低光电压力和夜间温度,以及在某些情况下产生强烈的热量倒置,从而显示了不同的云成分,垂直厚度和不相处的热木星大气层。随着辐照的减少,夜边逐渐形成云层,西边凉爽,然后是东部肢体和中央时代。我们发现,根据云的垂直范围,云可以显着修改辐射传输,并影响比T_IRR〜3,000〜K(T_EQ〜2,100 K)更冷的行星特性。预期效应的精确强度取决于假定的参数,但是预测相曲线的趋势来自模拟集合。与无云模型相比,云导致较大的相曲线振幅和IR波长的较小相曲线偏移。在光学波长下,我们预测在中间温度(T_IRR〜2,000-3,500 K)处的大多数向西相曲线偏移,云局限于夜边和西边。如果云垂直紧凑(即,厚度的压力尺度高度的顺序),随着不同高度的不同冷凝水的形成,它们的分布和效果变得更加复杂 - 有些太深,无法显着影响可观察到的气氛。我们的结果对用T_IRR <〜3,000〜K解释行星相位曲线观察的多样性具有影响。
Using a general circulation model (GCM), we investigate trends in simulated hot Jupiter atmospheres for a range of irradiation temperatures (1,500 - 4,000 K), surface gravities (10 and 40 m s-2), and cloud conditions. Our models include simplified temperature-dependent clouds with radiative feedback and show how different cloud compositions, vertical thicknesses, and opacities shape hot Jupiters atmospheres by potentially increasing planetary albedos, decreasing photospheric pressures and nightside temperatures, and in some cases producing strong dayside thermal inversions. With decreasing irradiation, clouds progressively form on the nightside and cooler western limb followed by the eastern limb and central dayside. We find that clouds significantly modify the radiative transport and affect the observable properties of planets colder than T_irr ~ 3,000~K (T_eq~2,100 K) depending on the clouds' vertical extent. The precise strength of expected effects depends on the assumed parameters, but trends in predicted phase curves emerge from an ensemble of simulations. Clouds lead to larger phase curve amplitudes and smaller phase curve offsets at IR wavelengths, compared to cloud-free models. At optical wavelengths, we predict mostly westward phase curve offsets at intermediate temperatures (T_irr ~ 2,000 - 3,500 K) with clouds confined to the nightside and western limb. If clouds are vertically compact (i.e. on order of a pressure scale height in thickness), their distributions and effects become more complicated as different condensates form at different heights -- some too deep to significantly affect the observable atmosphere. Our results have implications for interpreting the diversity of phase curve observations of planets with T_irr <~3,000~K.