论文标题
高成功的标准量子传送,使用孔中的纠缠相干状态和两级原子
High success standard quantum teleportation using entangled coherent state and two-level atoms in cavities
论文作者
论文摘要
我们在这里提出了一个新的想法,用于量化超叠的连贯状态,这原则上几乎是完美的,而且在实验上也是可行的。我们使用纠缠的资源$ \ sim |α,\fracα{\ sqrt {\ sqrt {2}} \ rangle- |-α, - \fracα{\ sqrt {\ sqrt {2}} \ rangle $相反,与惯例相反鲍勃(Bob)收到状态,然后是状态的叠加,$ | \ pm \fracα{\ sqrt {2}}} \ rangle $。鲍勃将它们与均匀或奇怪的状态混合在一起,涉及状态$ | \ pm \fracα{\ sqrt {\ sqrt {2}}} \ rangle $,以获得两种模式状态,这是$ \ sim | i,0 \ sim | i,0 \ rangle \ rangle \ pm | pm | 0,i \ rangle $,$,$,$ | i \ i \ rangle $ rangle $ the the the contection the eoffect noctation noctate noctate noutdate noctate noutdate。然后,鲍勃通过在两个腔中使用这些模式之一的相互作用与具有共鸣的两级原子的相互作用获得传送的信息。该方案的平均保真度为$ \ simeq 0.95 $ for $ |α|^2 \ simeq 10 $,它以$ |α|^2 $增加,并且趋向于1个渐近$ 1- \ frac {π^2} {16 |α|^2}+\ frac {π^2(π^2+8)} {256 |α|^4} $,对于$ |α|^2 $的较大值。
We propose here a new idea for quantum teleportation of superposed coherent state which is not only almost perfect, in principle, but also feasible experimentally. We use entangled resource $\sim |α,\fracα{\sqrt{2}}\rangle-|-α,-\fracα{\sqrt{2}}\rangle$ in contrast with the usual $\sim |α,α\rangle-|-α,-α\rangle$ (both states unnormalized). Bob receives state which is then superposition of the states $|\pm \fracα{\sqrt{2}}\rangle$ . Bob mixes these with even or odd coherent states involving superposition of states $|\pm \fracα{\sqrt{2}}\rangle$ to obtain a two-mode state which is one of $\sim |I,0\rangle \pm |0,I\rangle$, $|I\rangle$ being the information state. Bob then obtains the teleported information by using interaction of one of these modes in two cavities with resonant two-level atoms. This scheme results in average fidelity of $\simeq 0.95$ for $|α|^2 \simeq 10$, which increases with $|α|^2$ and tends to 1 asymptotically, varying as $1-\frac{π^2}{16|α|^2}+\frac{π^2(π^2+8)}{256|α|^4}$ for large values of $|α|^2$.