论文标题

使用放射线学方法的胃肠道基质肿瘤的鉴别诊断和分子分层

Differential diagnosis and molecular stratification of gastrointestinal stromal tumors on CT images using a radiomics approach

论文作者

Starmans, Martijn P. A., Timbergen, Milea J. M., Vos, Melissa, Renckens, Michel, Grünhagen, Dirk J., van Leenders, Geert J. L. H., Dwarkasing, Roy S., Willemssen, François E. J. A., Niessen, Wiro J., Verhoef, Cornelis, Sleijfer, Stefan, Visser, Jacob J., Klein, Stefan

论文摘要

区分胃肠道肿瘤(GIST)与其他腹腔内肿瘤和GIST分子分析是必不可少的,这对于治疗计划是必要的,但由于其稀有性而具有挑战性。这项研究的目的是评估放射素学以区分其他腹腔内肿瘤,并在GIST中预测C-KIT,PDGFRA,BRAF突变状态和有丝分裂指数(MI)。所有247名均包括患者(125个GIST,122种非阶段)进行对比增强的静脉相CT。 GIST与非跨度放射素学模型(包括成像,年龄,性别和位置)在曲线(AUC)下的平均面积为0.82。三名放射科医生的AUC分别为0.69、0.76和0.84。放射素模型的C-KIT为0.52,C-KIT外显子11的AUC为0.56,MI的AUC为0.56,为0.52。因此,我们的放射线学模型能够将要点与类似于三个放射科医生的性能的非晶体区分开,但无法预测C-KIT突变或MI。

Distinguishing gastrointestinal stromal tumors (GISTs) from other intra-abdominal tumors and GISTs molecular analysis is necessary for treatment planning, but challenging due to its rarity. The aim of this study was to evaluate radiomics for distinguishing GISTs from other intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA,BRAF mutational status and mitotic index (MI). All 247 included patients (125 GISTS, 122 non-GISTs) underwent a contrast-enhanced venous phase CT. The GIST vs. non-GIST radiomics model, including imaging, age, sex and location, had a mean area under the curve (AUC) of 0.82. Three radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model had an AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. Hence, our radiomics model was able to distinguish GIST from non-GISTS with a performance similar to three radiologists, but was not able to predict the c-KIT mutation or MI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源