论文标题
Corel:通过概念学习和关系转移的种子引导的局部分类构建
CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and Relation Transferring
论文作者
论文摘要
分类法不仅是知识代表的一种基本形式,而且对庞大的知识应用程序(例如问答和网络搜索)也至关重要。大多数现有的分类法构建方法提取了高音 - 基督教实体对组织“通用”分类法。但是,这些通用分类法无法满足用户在某些领域和关系中的特定兴趣。此外,实例分类法的性质将每个节点视为一个单词,其语义覆盖范围较低。在本文中,我们提出了一种用于种子引导的局部分类法构建方法,该方法采用概念名称为输入的语料库和种子分类法,并根据用户的兴趣构建更完整的分类法,其中每个节点都由一系列相干术语表示。我们的框架Corel有两个模块可以实现这一目标。关系传输模块可以学习并转移用户沿多个路径的感兴趣的关系,以扩大种子分类结构的宽度和深度。概念学习模块通过共同嵌入分类法和文本来丰富每个概念节点的语义。在现实世界数据集上进行的综合实验表明,Corel会产生高质量的局部分类法,并且胜过所有基准的表现。
Taxonomy is not only a fundamental form of knowledge representation, but also crucial to vast knowledge-rich applications, such as question answering and web search. Most existing taxonomy construction methods extract hypernym-hyponym entity pairs to organize a "universal" taxonomy. However, these generic taxonomies cannot satisfy user's specific interest in certain areas and relations. Moreover, the nature of instance taxonomy treats each node as a single word, which has low semantic coverage. In this paper, we propose a method for seed-guided topical taxonomy construction, which takes a corpus and a seed taxonomy described by concept names as input, and constructs a more complete taxonomy based on user's interest, wherein each node is represented by a cluster of coherent terms. Our framework, CoRel, has two modules to fulfill this goal. A relation transferring module learns and transfers the user's interested relation along multiple paths to expand the seed taxonomy structure in width and depth. A concept learning module enriches the semantics of each concept node by jointly embedding the taxonomy and text. Comprehensive experiments conducted on real-world datasets show that Corel generates high-quality topical taxonomies and outperforms all the baselines significantly.