论文标题

实验测试准二维湿泡沫中各个气泡的普遍变形模型

Experimentally Testing a Generalized Coarsening Model for Individual Bubbles in Quasi-Two-Dimensional Wet Foams

论文作者

Chieco, Anthony T., Durian, Douglas J.

论文摘要

我们提供了气泡面积面积$ a(t)$和圆形形状参数$ c(t)$的高精度数据,用于准2D泡沫,这些泡沫由平行板之间的气泡组成。为了与Roth等人的预测完全比较。 [物理。 Rev. E 87 2013]和Schimming等。 [物理。 Rev. E 96 2017],通过控制液体储层上方的样品高度,该泡沫湿度会系统地改变,这又控制着高原边界通货膨胀的半径$ r $。对于非常干燥的泡沫,在边界非常小的地方,经典的冯·诺伊曼(Von Neumann)行为可以观察到泡沫的生长速率仅取决于其侧面的数量$ n $。对于湿泡沫,膨胀的边界会阻碍气体交换,并造成与冯·诺伊曼定律的偏差,这些定律被发现与广义的浓缩方程相符。特别是,总体生长速率随膜高度线性变化,随着表面高原接壤膨胀,这会降低。而且,更有趣的是,从$ da/dt \ propto(n-6)$ von neumann行为的偏差按$ ncr/\ sqrt {a} $成比例增长。这是由六面气泡的数据确定的,除本术语的存在外,禁止生长或收缩。并且通过所有四个相关数量的变化进行定量测试:$ n $,$ c $,$ r $和$ a $

We present high-precision data for the time evolution of bubble area $A(t)$ and circularity shape parameter $C(t)$ for quasi-2d foams consisting of bubbles squashed between parallel plates. In order to fully compare with predictions by Roth et al. [Phys. Rev. E 87 2013] and Schimming et al. [Phys. Rev. E 96 2017], foam wetness is systematically varied by controlling the height of the sample above a liquid reservoir which in turn controls the radius $r$ of the inflation of the Plateau borders. For very dry foams, where the borders are very small, classic von Neumann behavior is observed where a bubble's growth rate depends only on its number $n$ of sides. For wet foams, the inflated borders impede gas exchange and cause deviations from von Neumann's law that are found to be in accord with the generalized coarsening equation. In particular, the overall growth rate varies linearly with the film height, which decrease as surface Plateau borders inflate. And, more interestingly, the deviation from $dA/dt\propto (n-6)$ von Neumann behavior grows in proportion to $nCr/\sqrt{A}$. This is highlighted definitively by data for six-sided bubbles, which are forbidden to grow or shrink except for the existence of this term. And it is tested quantitatively by variation of all four relevant quantities: $n$, $C$, $r$, and $A$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源