论文标题

在火星上进行科学旋翼飞机中空中部署的动机和初步设计

Motivations and Preliminary Design for Mid-Air Deployment of a Science Rotorcraft on Mars

论文作者

Delaune, Jeff, Izraelevitz, Jacob, Young, Larry A., Rapin, William, Sklyanskiy, Evgeniy, Johnson, Wayne, Schutte, Aaron, Fraeman, Abigail, Scott, Valerie, Leake, Carl, Ballesteros, Erik, Withrow, Shannah, Bhagwat, Raghav, Cummings, Haley, Aaron, Kim, Veismann, Marcel, Wei, Skylar, Lee, Regina, Madrid, Luis Pabon, Gharib, Morteza, Burdick, Joel

论文摘要

火星进入,下降和着陆(EDL)的旋翼飞机的空中部署(MAD)消除了携带推进或安全气囊着陆系统的需求。这使Aeroshell内部的总质量减少了100公斤以上,并简化了Aeroshell建筑。 MAD的更轻松,更简单的设计可能会带来与任务降低相关的风险和成本。此外,较轻的入口质量可以使火星高地的降落在目前的EDL技术无法接近的海拔高度处。本文为火星直升机提出了一个新颖的疯狂概念。我们建议使用最低的科学有效载荷包,以在高地进行相关科学。提出了一种创新的直升机的一种变体,以在疯狂的过程中提供增加的减速,并有足够的升降机在高地驾驶科学有效载荷。我们在模拟中表明,较轻的Aeroshell在EDL降落伞相结束时会导致较低的末端速度(30 m/s),并且在高度较高的高度下,比其他方法更高。在讨论了与以这种速度部署相关的空气动力学,控制,指导和机械挑战之后,我们提出了一种反壳体系结构,该架构解决了它们以在最安全的条件下释放直升机。最后,我们在JPL动力学和实时仿真(DARTS)框架中实现了直升机模型和空气动力下降扰动。初步性能评估表明,可达到降落和直升机操作扫描,可达到5 km mola(火星轨道激光高度计参考)。

Mid-Air Deployment (MAD) of a rotorcraft during Entry, Descent and Landing (EDL) on Mars eliminates the need to carry a propulsion or airbag landing system. This reduces the total mass inside the aeroshell by more than 100 kg and simplifies the aeroshell architecture. MAD's lighter and simpler design is likely to bring the risk and cost associated with the mission down. Moreover, the lighter entry mass enables landing in the Martian highlands, at elevations inaccessible to current EDL technologies. This paper proposes a novel MAD concept for a Mars helicopter. We suggest a minimum science payload package to perform relevant science in the highlands. A variant of the Ingenuity helicopter is proposed to provide increased deceleration during MAD, and enough lift to fly the science payload in the highlands. We show in simulation that the lighter aeroshell results in a lower terminal velocity (30 m/s) at the end of the parachute phase of the EDL, and at higher altitudes than other approaches. After discussing the aerodynamics, controls, guidance, and mechanical challenges associated with deploying at such speed, we propose a backshell architecture that addresses them to release the helicopter in the safest conditions. Finally, we implemented the helicopter model and aerodynamic descent perturbations in the JPL Dynamics and Real-Time Simulation (DARTS)framework. Preliminary performance evaluation indicates landing and helicopter operation scan be achieved up to 5 km MOLA (Mars Orbiter Laser Altimeter reference).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源