论文标题

胆量,体积和绞线模块的3个模块

Guts, volume and Skein Modules of 3-manifolds

论文作者

Bavier, Brandon, Kalfagianni, Efstratia

论文摘要

我们考虑双曲线链接,这些链接可以接收紧凑,不可还原的3个manifolds的表面上的交替预测。我们表明,在一些温和的假设下,这种链接的补充体积下面是根据表面链路图上定义的kauffman支架函数而言。 如果3个序列是增厚的表面,则该kauffman括号函数会导致琼斯型多项式,这是链接的同位素不变的。我们表明,该多项式的系数在增厚表面的双曲线交替链路的体积上提供了2面线性边界。作为该结果证明的必然性,我们推断出,链接的扭曲数量与磁盘区域交替链接投影,是该链接的不变性。

We consider hyperbolic links that admit alternating projections on surfaces in compact, irreducible 3-manifolds. We show that, under some mild hypotheses, the volume of the complement of such a link is bounded below in terms of a Kauffman bracket function defined on link diagrams on the surface. In the case that the 3-manifold is a thickened surface, this Kauffman bracket function leads to a Jones-type polynomial that is an isotopy invariant of links. We show that coefficients of this polynomial provide 2-sided linear bounds on the volume of hyperbolic alternating links in the thickened surface. As a corollary of the proof of this result, we deduce that the twist number of a reduced, twist reduced, checkerboard alternating link projection with disk regions, is an invariant of the link.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源