论文标题

高斯化地球:地球数据分析的多维信息度量

Gaussianizing the Earth: Multidimensional Information Measures for Earth Data Analysis

论文作者

Johnson, J. Emmanuel, Laparra, Valero, Piles, Maria, Camps-Valls, Gustau

论文摘要

信息理论是分析地球系统数据的绝佳框架,因为它使我们能够表征不确定性和冗余,并且可以普遍解释。但是,准确估算信息内容是具有挑战性的,因为时空数据是高维,异质性并且具有非线性特征的。在本文中,我们将多元高斯化用于概率密度估计,这对维度具有鲁棒性,具有统计保证,并且易于应用。此外,这种方法使我们能够估算信息理论措施以表征多元密度:信息,熵,总相关和互信息。我们证明了如何将信息理论度量应用于各种地球系统数据分析问题。首先,我们展示该方法如何用于共同进行高斯雷达反向散射强度,合成高光谱数据以及量化空中光学图像中信息内容。我们还量化了描述农业生态系统中土壤植被状态的几个变量的信息内容,并研究了在极端事件(例如干旱)下最大化其共享信息的时间尺度。最后,我们测量遥感产品和模型模拟中空间和时间维度的相对信息内容,涉及诸如降水,明智的热量和蒸发等关键变量的长期记录。结果证实了该方法的有效性,我们预计该方法将广泛使用和采用。提供了实施算法和信息理论措施的代码和演示。

Information theory is an excellent framework for analyzing Earth system data because it allows us to characterize uncertainty and redundancy, and is universally interpretable. However, accurately estimating information content is challenging because spatio-temporal data is high-dimensional, heterogeneous and has non-linear characteristics. In this paper, we apply multivariate Gaussianization for probability density estimation which is robust to dimensionality, comes with statistical guarantees, and is easy to apply. In addition, this methodology allows us to estimate information-theoretic measures to characterize multivariate densities: information, entropy, total correlation, and mutual information. We demonstrate how information theory measures can be applied in various Earth system data analysis problems. First we show how the method can be used to jointly Gaussianize radar backscattering intensities, synthesize hyperspectral data, and quantify of information content in aerial optical images. We also quantify the information content of several variables describing the soil-vegetation status in agro-ecosystems, and investigate the temporal scales that maximize their shared information under extreme events such as droughts. Finally, we measure the relative information content of space and time dimensions in remote sensing products and model simulations involving long records of key variables such as precipitation, sensible heat and evaporation. Results confirm the validity of the method, for which we anticipate a wide use and adoption. Code and demos of the implemented algorithms and information-theory measures are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源